If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is
$2$
$3$
$5$
$6$
If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$
Find the general solution of the equation $\cos 3 x+\cos x-\cos 2 x=0$
The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is
If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is