Trigonometrical Equations
normal

If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

A

$2$

B

$3$

C

$5$

D

$6$

Solution

$-\cos 2 x+\frac{\sin 2 x}{2}=k-1$

$-\frac{\sqrt{5}}{2} \leq k-1 \leq \frac{\sqrt{5}}{2}$

$ \Rightarrow 1-\frac{\sqrt{5}}{2} \leq k \leq 1+\frac{\sqrt{5}}{2}$

$\therefore \operatorname{sum}=0+1+2=3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.