If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $6$

Similar Questions

If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is

If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is

Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^2$ is equal to

  • [JEE MAIN 2023]

The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :

If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $k \pi$, then $k$ is equal to.

  • [JEE MAIN 2022]